direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C23×D31, C31⋊C24, C62⋊C23, (C22×C62)⋊3C2, (C2×C62)⋊4C22, SmallGroup(496,41)
Series: Derived ►Chief ►Lower central ►Upper central
| C31 — C23×D31 |
Generators and relations for C23×D31
G = < a,b,c,d,e | a2=b2=c2=d31=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 1664 in 134 conjugacy classes, 83 normal (5 characteristic)
C1, C2, C2, C22, C22, C23, C23, C24, C31, D31, C62, D62, C2×C62, C22×D31, C22×C62, C23×D31
Quotients: C1, C2, C22, C23, C24, D31, D62, C22×D31, C23×D31
(1 127)(2 128)(3 129)(4 130)(5 131)(6 132)(7 133)(8 134)(9 135)(10 136)(11 137)(12 138)(13 139)(14 140)(15 141)(16 142)(17 143)(18 144)(19 145)(20 146)(21 147)(22 148)(23 149)(24 150)(25 151)(26 152)(27 153)(28 154)(29 155)(30 125)(31 126)(32 184)(33 185)(34 186)(35 156)(36 157)(37 158)(38 159)(39 160)(40 161)(41 162)(42 163)(43 164)(44 165)(45 166)(46 167)(47 168)(48 169)(49 170)(50 171)(51 172)(52 173)(53 174)(54 175)(55 176)(56 177)(57 178)(58 179)(59 180)(60 181)(61 182)(62 183)(63 188)(64 189)(65 190)(66 191)(67 192)(68 193)(69 194)(70 195)(71 196)(72 197)(73 198)(74 199)(75 200)(76 201)(77 202)(78 203)(79 204)(80 205)(81 206)(82 207)(83 208)(84 209)(85 210)(86 211)(87 212)(88 213)(89 214)(90 215)(91 216)(92 217)(93 187)(94 229)(95 230)(96 231)(97 232)(98 233)(99 234)(100 235)(101 236)(102 237)(103 238)(104 239)(105 240)(106 241)(107 242)(108 243)(109 244)(110 245)(111 246)(112 247)(113 248)(114 218)(115 219)(116 220)(117 221)(118 222)(119 223)(120 224)(121 225)(122 226)(123 227)(124 228)
(1 103)(2 104)(3 105)(4 106)(5 107)(6 108)(7 109)(8 110)(9 111)(10 112)(11 113)(12 114)(13 115)(14 116)(15 117)(16 118)(17 119)(18 120)(19 121)(20 122)(21 123)(22 124)(23 94)(24 95)(25 96)(26 97)(27 98)(28 99)(29 100)(30 101)(31 102)(32 73)(33 74)(34 75)(35 76)(36 77)(37 78)(38 79)(39 80)(40 81)(41 82)(42 83)(43 84)(44 85)(45 86)(46 87)(47 88)(48 89)(49 90)(50 91)(51 92)(52 93)(53 63)(54 64)(55 65)(56 66)(57 67)(58 68)(59 69)(60 70)(61 71)(62 72)(125 236)(126 237)(127 238)(128 239)(129 240)(130 241)(131 242)(132 243)(133 244)(134 245)(135 246)(136 247)(137 248)(138 218)(139 219)(140 220)(141 221)(142 222)(143 223)(144 224)(145 225)(146 226)(147 227)(148 228)(149 229)(150 230)(151 231)(152 232)(153 233)(154 234)(155 235)(156 201)(157 202)(158 203)(159 204)(160 205)(161 206)(162 207)(163 208)(164 209)(165 210)(166 211)(167 212)(168 213)(169 214)(170 215)(171 216)(172 217)(173 187)(174 188)(175 189)(176 190)(177 191)(178 192)(179 193)(180 194)(181 195)(182 196)(183 197)(184 198)(185 199)(186 200)
(1 62)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 55)(26 56)(27 57)(28 58)(29 59)(30 60)(31 61)(63 94)(64 95)(65 96)(66 97)(67 98)(68 99)(69 100)(70 101)(71 102)(72 103)(73 104)(74 105)(75 106)(76 107)(77 108)(78 109)(79 110)(80 111)(81 112)(82 113)(83 114)(84 115)(85 116)(86 117)(87 118)(88 119)(89 120)(90 121)(91 122)(92 123)(93 124)(125 181)(126 182)(127 183)(128 184)(129 185)(130 186)(131 156)(132 157)(133 158)(134 159)(135 160)(136 161)(137 162)(138 163)(139 164)(140 165)(141 166)(142 167)(143 168)(144 169)(145 170)(146 171)(147 172)(148 173)(149 174)(150 175)(151 176)(152 177)(153 178)(154 179)(155 180)(187 228)(188 229)(189 230)(190 231)(191 232)(192 233)(193 234)(194 235)(195 236)(196 237)(197 238)(198 239)(199 240)(200 241)(201 242)(202 243)(203 244)(204 245)(205 246)(206 247)(207 248)(208 218)(209 219)(210 220)(211 221)(212 222)(213 223)(214 224)(215 225)(216 226)(217 227)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)(32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62)(63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93)(94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124)(125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155)(156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186)(187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217)(218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248)
(1 182)(2 181)(3 180)(4 179)(5 178)(6 177)(7 176)(8 175)(9 174)(10 173)(11 172)(12 171)(13 170)(14 169)(15 168)(16 167)(17 166)(18 165)(19 164)(20 163)(21 162)(22 161)(23 160)(24 159)(25 158)(26 157)(27 156)(28 186)(29 185)(30 184)(31 183)(32 125)(33 155)(34 154)(35 153)(36 152)(37 151)(38 150)(39 149)(40 148)(41 147)(42 146)(43 145)(44 144)(45 143)(46 142)(47 141)(48 140)(49 139)(50 138)(51 137)(52 136)(53 135)(54 134)(55 133)(56 132)(57 131)(58 130)(59 129)(60 128)(61 127)(62 126)(63 246)(64 245)(65 244)(66 243)(67 242)(68 241)(69 240)(70 239)(71 238)(72 237)(73 236)(74 235)(75 234)(76 233)(77 232)(78 231)(79 230)(80 229)(81 228)(82 227)(83 226)(84 225)(85 224)(86 223)(87 222)(88 221)(89 220)(90 219)(91 218)(92 248)(93 247)(94 205)(95 204)(96 203)(97 202)(98 201)(99 200)(100 199)(101 198)(102 197)(103 196)(104 195)(105 194)(106 193)(107 192)(108 191)(109 190)(110 189)(111 188)(112 187)(113 217)(114 216)(115 215)(116 214)(117 213)(118 212)(119 211)(120 210)(121 209)(122 208)(123 207)(124 206)
G:=sub<Sym(248)| (1,127)(2,128)(3,129)(4,130)(5,131)(6,132)(7,133)(8,134)(9,135)(10,136)(11,137)(12,138)(13,139)(14,140)(15,141)(16,142)(17,143)(18,144)(19,145)(20,146)(21,147)(22,148)(23,149)(24,150)(25,151)(26,152)(27,153)(28,154)(29,155)(30,125)(31,126)(32,184)(33,185)(34,186)(35,156)(36,157)(37,158)(38,159)(39,160)(40,161)(41,162)(42,163)(43,164)(44,165)(45,166)(46,167)(47,168)(48,169)(49,170)(50,171)(51,172)(52,173)(53,174)(54,175)(55,176)(56,177)(57,178)(58,179)(59,180)(60,181)(61,182)(62,183)(63,188)(64,189)(65,190)(66,191)(67,192)(68,193)(69,194)(70,195)(71,196)(72,197)(73,198)(74,199)(75,200)(76,201)(77,202)(78,203)(79,204)(80,205)(81,206)(82,207)(83,208)(84,209)(85,210)(86,211)(87,212)(88,213)(89,214)(90,215)(91,216)(92,217)(93,187)(94,229)(95,230)(96,231)(97,232)(98,233)(99,234)(100,235)(101,236)(102,237)(103,238)(104,239)(105,240)(106,241)(107,242)(108,243)(109,244)(110,245)(111,246)(112,247)(113,248)(114,218)(115,219)(116,220)(117,221)(118,222)(119,223)(120,224)(121,225)(122,226)(123,227)(124,228), (1,103)(2,104)(3,105)(4,106)(5,107)(6,108)(7,109)(8,110)(9,111)(10,112)(11,113)(12,114)(13,115)(14,116)(15,117)(16,118)(17,119)(18,120)(19,121)(20,122)(21,123)(22,124)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,101)(31,102)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,81)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,90)(50,91)(51,92)(52,93)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(125,236)(126,237)(127,238)(128,239)(129,240)(130,241)(131,242)(132,243)(133,244)(134,245)(135,246)(136,247)(137,248)(138,218)(139,219)(140,220)(141,221)(142,222)(143,223)(144,224)(145,225)(146,226)(147,227)(148,228)(149,229)(150,230)(151,231)(152,232)(153,233)(154,234)(155,235)(156,201)(157,202)(158,203)(159,204)(160,205)(161,206)(162,207)(163,208)(164,209)(165,210)(166,211)(167,212)(168,213)(169,214)(170,215)(171,216)(172,217)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(183,197)(184,198)(185,199)(186,200), (1,62)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(63,94)(64,95)(65,96)(66,97)(67,98)(68,99)(69,100)(70,101)(71,102)(72,103)(73,104)(74,105)(75,106)(76,107)(77,108)(78,109)(79,110)(80,111)(81,112)(82,113)(83,114)(84,115)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121)(91,122)(92,123)(93,124)(125,181)(126,182)(127,183)(128,184)(129,185)(130,186)(131,156)(132,157)(133,158)(134,159)(135,160)(136,161)(137,162)(138,163)(139,164)(140,165)(141,166)(142,167)(143,168)(144,169)(145,170)(146,171)(147,172)(148,173)(149,174)(150,175)(151,176)(152,177)(153,178)(154,179)(155,180)(187,228)(188,229)(189,230)(190,231)(191,232)(192,233)(193,234)(194,235)(195,236)(196,237)(197,238)(198,239)(199,240)(200,241)(201,242)(202,243)(203,244)(204,245)(205,246)(206,247)(207,248)(208,218)(209,219)(210,220)(211,221)(212,222)(213,223)(214,224)(215,225)(216,226)(217,227), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93)(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124)(125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155)(156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186)(187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217)(218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248), (1,182)(2,181)(3,180)(4,179)(5,178)(6,177)(7,176)(8,175)(9,174)(10,173)(11,172)(12,171)(13,170)(14,169)(15,168)(16,167)(17,166)(18,165)(19,164)(20,163)(21,162)(22,161)(23,160)(24,159)(25,158)(26,157)(27,156)(28,186)(29,185)(30,184)(31,183)(32,125)(33,155)(34,154)(35,153)(36,152)(37,151)(38,150)(39,149)(40,148)(41,147)(42,146)(43,145)(44,144)(45,143)(46,142)(47,141)(48,140)(49,139)(50,138)(51,137)(52,136)(53,135)(54,134)(55,133)(56,132)(57,131)(58,130)(59,129)(60,128)(61,127)(62,126)(63,246)(64,245)(65,244)(66,243)(67,242)(68,241)(69,240)(70,239)(71,238)(72,237)(73,236)(74,235)(75,234)(76,233)(77,232)(78,231)(79,230)(80,229)(81,228)(82,227)(83,226)(84,225)(85,224)(86,223)(87,222)(88,221)(89,220)(90,219)(91,218)(92,248)(93,247)(94,205)(95,204)(96,203)(97,202)(98,201)(99,200)(100,199)(101,198)(102,197)(103,196)(104,195)(105,194)(106,193)(107,192)(108,191)(109,190)(110,189)(111,188)(112,187)(113,217)(114,216)(115,215)(116,214)(117,213)(118,212)(119,211)(120,210)(121,209)(122,208)(123,207)(124,206)>;
G:=Group( (1,127)(2,128)(3,129)(4,130)(5,131)(6,132)(7,133)(8,134)(9,135)(10,136)(11,137)(12,138)(13,139)(14,140)(15,141)(16,142)(17,143)(18,144)(19,145)(20,146)(21,147)(22,148)(23,149)(24,150)(25,151)(26,152)(27,153)(28,154)(29,155)(30,125)(31,126)(32,184)(33,185)(34,186)(35,156)(36,157)(37,158)(38,159)(39,160)(40,161)(41,162)(42,163)(43,164)(44,165)(45,166)(46,167)(47,168)(48,169)(49,170)(50,171)(51,172)(52,173)(53,174)(54,175)(55,176)(56,177)(57,178)(58,179)(59,180)(60,181)(61,182)(62,183)(63,188)(64,189)(65,190)(66,191)(67,192)(68,193)(69,194)(70,195)(71,196)(72,197)(73,198)(74,199)(75,200)(76,201)(77,202)(78,203)(79,204)(80,205)(81,206)(82,207)(83,208)(84,209)(85,210)(86,211)(87,212)(88,213)(89,214)(90,215)(91,216)(92,217)(93,187)(94,229)(95,230)(96,231)(97,232)(98,233)(99,234)(100,235)(101,236)(102,237)(103,238)(104,239)(105,240)(106,241)(107,242)(108,243)(109,244)(110,245)(111,246)(112,247)(113,248)(114,218)(115,219)(116,220)(117,221)(118,222)(119,223)(120,224)(121,225)(122,226)(123,227)(124,228), (1,103)(2,104)(3,105)(4,106)(5,107)(6,108)(7,109)(8,110)(9,111)(10,112)(11,113)(12,114)(13,115)(14,116)(15,117)(16,118)(17,119)(18,120)(19,121)(20,122)(21,123)(22,124)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,101)(31,102)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,81)(41,82)(42,83)(43,84)(44,85)(45,86)(46,87)(47,88)(48,89)(49,90)(50,91)(51,92)(52,93)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70)(61,71)(62,72)(125,236)(126,237)(127,238)(128,239)(129,240)(130,241)(131,242)(132,243)(133,244)(134,245)(135,246)(136,247)(137,248)(138,218)(139,219)(140,220)(141,221)(142,222)(143,223)(144,224)(145,225)(146,226)(147,227)(148,228)(149,229)(150,230)(151,231)(152,232)(153,233)(154,234)(155,235)(156,201)(157,202)(158,203)(159,204)(160,205)(161,206)(162,207)(163,208)(164,209)(165,210)(166,211)(167,212)(168,213)(169,214)(170,215)(171,216)(172,217)(173,187)(174,188)(175,189)(176,190)(177,191)(178,192)(179,193)(180,194)(181,195)(182,196)(183,197)(184,198)(185,199)(186,200), (1,62)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(31,61)(63,94)(64,95)(65,96)(66,97)(67,98)(68,99)(69,100)(70,101)(71,102)(72,103)(73,104)(74,105)(75,106)(76,107)(77,108)(78,109)(79,110)(80,111)(81,112)(82,113)(83,114)(84,115)(85,116)(86,117)(87,118)(88,119)(89,120)(90,121)(91,122)(92,123)(93,124)(125,181)(126,182)(127,183)(128,184)(129,185)(130,186)(131,156)(132,157)(133,158)(134,159)(135,160)(136,161)(137,162)(138,163)(139,164)(140,165)(141,166)(142,167)(143,168)(144,169)(145,170)(146,171)(147,172)(148,173)(149,174)(150,175)(151,176)(152,177)(153,178)(154,179)(155,180)(187,228)(188,229)(189,230)(190,231)(191,232)(192,233)(193,234)(194,235)(195,236)(196,237)(197,238)(198,239)(199,240)(200,241)(201,242)(202,243)(203,244)(204,245)(205,246)(206,247)(207,248)(208,218)(209,219)(210,220)(211,221)(212,222)(213,223)(214,224)(215,225)(216,226)(217,227), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93)(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124)(125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155)(156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186)(187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217)(218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248), (1,182)(2,181)(3,180)(4,179)(5,178)(6,177)(7,176)(8,175)(9,174)(10,173)(11,172)(12,171)(13,170)(14,169)(15,168)(16,167)(17,166)(18,165)(19,164)(20,163)(21,162)(22,161)(23,160)(24,159)(25,158)(26,157)(27,156)(28,186)(29,185)(30,184)(31,183)(32,125)(33,155)(34,154)(35,153)(36,152)(37,151)(38,150)(39,149)(40,148)(41,147)(42,146)(43,145)(44,144)(45,143)(46,142)(47,141)(48,140)(49,139)(50,138)(51,137)(52,136)(53,135)(54,134)(55,133)(56,132)(57,131)(58,130)(59,129)(60,128)(61,127)(62,126)(63,246)(64,245)(65,244)(66,243)(67,242)(68,241)(69,240)(70,239)(71,238)(72,237)(73,236)(74,235)(75,234)(76,233)(77,232)(78,231)(79,230)(80,229)(81,228)(82,227)(83,226)(84,225)(85,224)(86,223)(87,222)(88,221)(89,220)(90,219)(91,218)(92,248)(93,247)(94,205)(95,204)(96,203)(97,202)(98,201)(99,200)(100,199)(101,198)(102,197)(103,196)(104,195)(105,194)(106,193)(107,192)(108,191)(109,190)(110,189)(111,188)(112,187)(113,217)(114,216)(115,215)(116,214)(117,213)(118,212)(119,211)(120,210)(121,209)(122,208)(123,207)(124,206) );
G=PermutationGroup([[(1,127),(2,128),(3,129),(4,130),(5,131),(6,132),(7,133),(8,134),(9,135),(10,136),(11,137),(12,138),(13,139),(14,140),(15,141),(16,142),(17,143),(18,144),(19,145),(20,146),(21,147),(22,148),(23,149),(24,150),(25,151),(26,152),(27,153),(28,154),(29,155),(30,125),(31,126),(32,184),(33,185),(34,186),(35,156),(36,157),(37,158),(38,159),(39,160),(40,161),(41,162),(42,163),(43,164),(44,165),(45,166),(46,167),(47,168),(48,169),(49,170),(50,171),(51,172),(52,173),(53,174),(54,175),(55,176),(56,177),(57,178),(58,179),(59,180),(60,181),(61,182),(62,183),(63,188),(64,189),(65,190),(66,191),(67,192),(68,193),(69,194),(70,195),(71,196),(72,197),(73,198),(74,199),(75,200),(76,201),(77,202),(78,203),(79,204),(80,205),(81,206),(82,207),(83,208),(84,209),(85,210),(86,211),(87,212),(88,213),(89,214),(90,215),(91,216),(92,217),(93,187),(94,229),(95,230),(96,231),(97,232),(98,233),(99,234),(100,235),(101,236),(102,237),(103,238),(104,239),(105,240),(106,241),(107,242),(108,243),(109,244),(110,245),(111,246),(112,247),(113,248),(114,218),(115,219),(116,220),(117,221),(118,222),(119,223),(120,224),(121,225),(122,226),(123,227),(124,228)], [(1,103),(2,104),(3,105),(4,106),(5,107),(6,108),(7,109),(8,110),(9,111),(10,112),(11,113),(12,114),(13,115),(14,116),(15,117),(16,118),(17,119),(18,120),(19,121),(20,122),(21,123),(22,124),(23,94),(24,95),(25,96),(26,97),(27,98),(28,99),(29,100),(30,101),(31,102),(32,73),(33,74),(34,75),(35,76),(36,77),(37,78),(38,79),(39,80),(40,81),(41,82),(42,83),(43,84),(44,85),(45,86),(46,87),(47,88),(48,89),(49,90),(50,91),(51,92),(52,93),(53,63),(54,64),(55,65),(56,66),(57,67),(58,68),(59,69),(60,70),(61,71),(62,72),(125,236),(126,237),(127,238),(128,239),(129,240),(130,241),(131,242),(132,243),(133,244),(134,245),(135,246),(136,247),(137,248),(138,218),(139,219),(140,220),(141,221),(142,222),(143,223),(144,224),(145,225),(146,226),(147,227),(148,228),(149,229),(150,230),(151,231),(152,232),(153,233),(154,234),(155,235),(156,201),(157,202),(158,203),(159,204),(160,205),(161,206),(162,207),(163,208),(164,209),(165,210),(166,211),(167,212),(168,213),(169,214),(170,215),(171,216),(172,217),(173,187),(174,188),(175,189),(176,190),(177,191),(178,192),(179,193),(180,194),(181,195),(182,196),(183,197),(184,198),(185,199),(186,200)], [(1,62),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,55),(26,56),(27,57),(28,58),(29,59),(30,60),(31,61),(63,94),(64,95),(65,96),(66,97),(67,98),(68,99),(69,100),(70,101),(71,102),(72,103),(73,104),(74,105),(75,106),(76,107),(77,108),(78,109),(79,110),(80,111),(81,112),(82,113),(83,114),(84,115),(85,116),(86,117),(87,118),(88,119),(89,120),(90,121),(91,122),(92,123),(93,124),(125,181),(126,182),(127,183),(128,184),(129,185),(130,186),(131,156),(132,157),(133,158),(134,159),(135,160),(136,161),(137,162),(138,163),(139,164),(140,165),(141,166),(142,167),(143,168),(144,169),(145,170),(146,171),(147,172),(148,173),(149,174),(150,175),(151,176),(152,177),(153,178),(154,179),(155,180),(187,228),(188,229),(189,230),(190,231),(191,232),(192,233),(193,234),(194,235),(195,236),(196,237),(197,238),(198,239),(199,240),(200,241),(201,242),(202,243),(203,244),(204,245),(205,246),(206,247),(207,248),(208,218),(209,219),(210,220),(211,221),(212,222),(213,223),(214,224),(215,225),(216,226),(217,227)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31),(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62),(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93),(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124),(125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155),(156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186),(187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217),(218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248)], [(1,182),(2,181),(3,180),(4,179),(5,178),(6,177),(7,176),(8,175),(9,174),(10,173),(11,172),(12,171),(13,170),(14,169),(15,168),(16,167),(17,166),(18,165),(19,164),(20,163),(21,162),(22,161),(23,160),(24,159),(25,158),(26,157),(27,156),(28,186),(29,185),(30,184),(31,183),(32,125),(33,155),(34,154),(35,153),(36,152),(37,151),(38,150),(39,149),(40,148),(41,147),(42,146),(43,145),(44,144),(45,143),(46,142),(47,141),(48,140),(49,139),(50,138),(51,137),(52,136),(53,135),(54,134),(55,133),(56,132),(57,131),(58,130),(59,129),(60,128),(61,127),(62,126),(63,246),(64,245),(65,244),(66,243),(67,242),(68,241),(69,240),(70,239),(71,238),(72,237),(73,236),(74,235),(75,234),(76,233),(77,232),(78,231),(79,230),(80,229),(81,228),(82,227),(83,226),(84,225),(85,224),(86,223),(87,222),(88,221),(89,220),(90,219),(91,218),(92,248),(93,247),(94,205),(95,204),(96,203),(97,202),(98,201),(99,200),(100,199),(101,198),(102,197),(103,196),(104,195),(105,194),(106,193),(107,192),(108,191),(109,190),(110,189),(111,188),(112,187),(113,217),(114,216),(115,215),(116,214),(117,213),(118,212),(119,211),(120,210),(121,209),(122,208),(123,207),(124,206)]])
136 conjugacy classes
| class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 31A | ··· | 31O | 62A | ··· | 62DA |
| order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 31 | ··· | 31 | 62 | ··· | 62 |
| size | 1 | 1 | ··· | 1 | 31 | ··· | 31 | 2 | ··· | 2 | 2 | ··· | 2 |
136 irreducible representations
| dim | 1 | 1 | 1 | 2 | 2 |
| type | + | + | + | + | + |
| image | C1 | C2 | C2 | D31 | D62 |
| kernel | C23×D31 | C22×D31 | C22×C62 | C23 | C22 |
| # reps | 1 | 14 | 1 | 15 | 105 |
Matrix representation of C23×D31 ►in GL5(𝔽311)
| 310 | 0 | 0 | 0 | 0 |
| 0 | 310 | 0 | 0 | 0 |
| 0 | 0 | 310 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 310 | 0 | 0 | 0 | 0 |
| 0 | 310 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 310 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 310 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 259 | 1 |
| 0 | 0 | 0 | 293 | 102 |
| 310 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 310 | 0 | 0 |
| 0 | 0 | 0 | 125 | 131 |
| 0 | 0 | 0 | 149 | 186 |
G:=sub<GL(5,GF(311))| [310,0,0,0,0,0,310,0,0,0,0,0,310,0,0,0,0,0,1,0,0,0,0,0,1],[310,0,0,0,0,0,310,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[310,0,0,0,0,0,1,0,0,0,0,0,310,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,259,293,0,0,0,1,102],[310,0,0,0,0,0,1,0,0,0,0,0,310,0,0,0,0,0,125,149,0,0,0,131,186] >;
C23×D31 in GAP, Magma, Sage, TeX
C_2^3\times D_{31} % in TeX
G:=Group("C2^3xD31"); // GroupNames label
G:=SmallGroup(496,41);
// by ID
G=gap.SmallGroup(496,41);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-31,12004]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^31=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations